
Agent-Based Elevator Control

Clark Moody

CSCE 631, Project 2

March 29, 2011

1 Introduction

This project seeks to find an agent-based con-
troller that enhances the performance of a
multi-elevator system. A common simulation
framework simplifies the problem and makes
results easily comparable between implementa-
tions. This report describes an agent that plans
its path through the floors of the building, com-
municates its intentions with other agents, and
bids on new tasks based on a time of arrival cost
function. The path-planner is compared with a
simple, non-cooperative rule-based controller.

The simulation environment allows for an ar-
bitrary number of floors and cars. Both time
and space are discrete in units of seconds and
feet, respectively. The dynamics of each car is
deterministic and discrete. An onboard control
system will bring each car to its desired goal
floor, and this functionality is built in to the
provided simulator. The arrival rate of passen-
gers is uniform across all floors and is a simple
probability that a new passenger will be created
on each time step. This value is also called the
load factor. Each passenger chooses a random
floor within the building as its destination. The
elevator car has a maximum capacity, in terms
of the number of passengers it may hold.

The details of the simulation environment dif-
fer from the dynamics of real elevator systems
mainly in the passenger load model. Real-world
passenger arrival patterns are not only non-
uniform in floor but also in time of day. Morn-
ing time traffic tends to originate on the ground
floor and choose multiple destinations, while af-
ternoon traffic originates on multiple floors and
has a common destination: the ground floor.

Crites & Barto [1] describe many common ap-
proaches to this problem domain.

Despite the differences mentioned above,
both the Simple and Enhanced elevator con-
trollers may still be compared directly within
their common task domain. As in the real-world
situation, cars see hall calls as a simple up or
down request on a certain floor. The decision
engine is unaware of the number of passengers
waiting on a given floor. Car calls give the ele-
vator knowledge of passenger destinations once
they enter the car.

2 Methods

The elevator simulator allows for limited deci-
sion making in each car: once per time step, if
the car is stopped with no current goal, it may
decide on a new goal floor. The car is not al-
lowed to change this goal during the trip. The
perceived shortcomings of this decision-making
approach are twofold. First, the car is unable
to pick up new calls while en route to its cur-
rent goal. Another car must dispatch to this
new call regardless of the efficiency of such a
decision. Second, a car cannot prevent travel-
ing to the goal floor even if the hall call button
is reset on that floor, implying that another car
has answered the call. It will simply arrive at
the floor, open its doors, and close them again
when no passengers load. The lack of any com-
munication mechanism between cars gives rise
to this particular shortfall.

The Simple car algorithm is very basic - it
accumulates internal passenger floor requests as
well as external hall calls into a single collection
and heads to the nearest floor among them.

1



Additional logic is required in order to ensure
that potential destinations are compatible with
the car’s indicated direction. Algorithm 1
presents the basic functionality of the Simple
car Decide() function.

Algorithm 1 The Simple Decide()

D ← my passenger destinations
C ← outstanding hall calls
d← my direction ∈ {−1, 0, 1}
f ← my floor
sortDescending?← (d == −1)

if this.atCapacity then

arraySort(D, sortDescending?)
GoTo(D[0])
return

end if

for i← 0 to |C| do
cf ← C[i].f loor
cd ← C[i].direction
if d 6= 0 and d == cd then

if d > 0 and f <= cf or d < 0 and

f >= cf then

arrayPush(D, cf )
end if

else if d == 0 then

arrayPush(D, cf )
end if

end for

arraySort(D, sortDescending?)
GoTo(D[0])

The Enhanced car agent seeks to alleviate the
perceived shortcomings of the Simple car. First,
each elevator maintains a plan of the path it
must take to fulfill its commitments. Each node
in the path includes a floor number, call di-
rection, requested action, estimated passenger
count, estimated time of arrival, and the pri-
ority number of the event. Path actions are
either load or unload, and plan call directions
may be up or down. The estimated passenger
count is computed based on the order in which
the car services load and unload requests, as-

suming one passenger per node. The case of
multiple passengers boarding is discussed later.
Since the dynamics of the simulator are known,
the agent may accurately estimate rest-to-rest
travel times between floors and even whether
the agent can stop in time to service a call
given its current position, velocity, and accel-
eration. The priority number of the path node
is simply the order the call entered the system.
Lower-numbered nodes are serviced with pri-
ority, as they entered the system earlier than
higher-numbered nodes.

The agent maintains consistency in its
planned path by recalculating the estimated pa-
rameters whenever a new node is added to the
path. If at any point in the path the passen-
ger count exceeds the car’s capacity, the car re-
cursively removes load request nodes until the
path is valid. This is the mechanism by which
the car copes with loading more passengers than
anticipated during stops. The agent informs the
others of its removal of a load request from its
path through the agent communication mecha-
nism: the blackboard.

The mechanism for preventing conflicting
agent goals is the blackboard, a common mem-
ory space shared between agents. Once per time
step, the blackboard is checked for consistency.
New hall calls are added to the blackboard and
bid upon immediately by all agents. Knowing
their current path, along with estimated time of
arrival to each node, each agent may estimate
whether it can logically fit the new call into its
path as well as when it would be able to ser-
vice the call. The bid submitted by each agent
is the time it would take it to reach the new
call plus the time from that call to the next call
in its path. This bidding format is essentially
a greedy search in time to reach the call and
resume the current course.

Sometimes, all agents are unable to bid on
a new call. In this case, a wait signal may be
placed on that call so that it is not bid upon
again until the wait signal is cleared. Since the
state of car paths remains unchanged during
travel, cars will not be able to bid again un-
til a state transition occurs. Thus, when a car
reaches its destination, removing a node from its

2



path, it resets the wait signal on all outstanding
calls posted on the blackboard, allowing for all
cars bid on these calls once more.

When an agent wins a bid for a new call, it
marks that call as claimed on the blackboard.
This is the method by which an agent commu-
nicates its intentions. Finding the path inser-
tion point for the new node requires a bit of
expert logic. For instance, an up call on floor
five should not come before an up call on floor
three if the car is below floor three and moving
up. Much of the effort in designing this sys-
tem is tied up in fixing edge cases in the path
insertion logic.

Due to the communication and path planning
requirements of the Enhanced agent, as well as
to the reporting and evaluation requirements,
some modifications were made to the simulation
framework.

• Passengers record when the car arrived to
pick them up.

• The global controller keeps a list of all pas-
sengers who have completed their trips.

• The controller maintains a list of hall calls
in order of occurrence and a flag denoting
new calls.

• The time step logic for the car is expanded
to allow for decision making while en route.

• The Load and Discharge functions add and
remove items from the agent path and
blackboard.

3 Results

Simulation results were obtained for a variety
of situations and address various metrics of per-
formance. As with any multi-variable problem,
some variables are held constant while others
change. The first set of results holds passen-
ger arrival rate and floor count constant and
varies the number of elevator shafts in the build-
ing. A building architect with this type of data
could determine the number of elevators to in-
stall for a known building design. The pickup

0 2 4 6 8 10 12 14 16 18 20
10

1

10
2

10
3

10
4

Number of Cars

P
ic

ku
p 

T
im

e 
[s

]

Simple
Enhanced
Recalc. 50
Recalc. 10

Figure 1: Average pickup time versus number
of cars (floors=30, load=0.02, t=10000)

time of the passenger is the time difference be-
tween calling for an elevator and loading into
the car. The percentage of trips completed rep-
resents the ability of the system to handle the
passenger arrival load; it is the proportion of to-
tal passengers in the system that reached their
destinations before the end of simulation.

Initial simulation results showed the Simple
agent vastly outperformed the Enhanced agent
in most situations. In an effort to confront a po-
tential over-commitment problem on the part of
the Enhanced agent, a recalculate interval was
added. At the end of a specified interval, each
car discards its current hall calls (while keep-
ing the car calls of onboard passengers) and all
agents rebid on all hall calls, in the order of call
priority. This extra computation step shows sig-
nificant improvement in the performance of the
Enhanced agent for all metrics tested.

The figures present results for a thirty floor
building after 10000 seconds of simulation time.
The load factor is 0.02, and the number of cars is
the horizontal axis variable. Figure 1 shows the
average pickup time over the simulation interval
versus the number of elevator shafts, and Fig-
ure 2 shows the percentage of trips completed by
the agents, also plotted against the number of
cars. The effectiveness of the Enhanced agent
in arriving at hall calls quickly is surprisingly
poor, as this is the metric bid upon in its cost
function. The Recalculate-50 and Recalculate-

3



0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

50

60

70

80

90

100

Number of Cars

%
 T

rip
s 

C
om

pl
et

ed

Simple
Enhanced
Recalc. 50
Recalc. 10

Figure 2: Percentage of completed trips versus
number of cars (floors=30, load=0.02, t=10000)

0 0.005 0.01 0.015 0.02 0.025 0.03
10

1

10
2

10
3

10
4

Passenger Arrival Rate

P
ic

ku
p 

T
im

e 
[s

]

Simple
Enhanced
Recalc. 10

Figure 3: Average pickup time versus passenger
load (floors=30, cars=10, t=10000)

10 agents are simply Enhanced agents that per-
form a recalculate step at 50 and 10 seconds,
respectively. Both agents improve upon the En-
hanced agent.

Figures 1 and 2 reveal that with 14 cars, the
Simple agent system achieves a near 100% com-
pletion rate and a drastic marginal improve-
ment in pickup time. Starting from this data
point, Figures 3 and 4 show the effects of vary-
ing the arrival rate of the passengers upon com-
pletion rate and pickup time.

The distribution of pickup times is important
because it helps to estimate the expected wait
time for a passenger. While Figures 1 and 3
plot average pickup times, Figures 5 through 8

0 0.005 0.01 0.015 0.02 0.025 0.03
40

50

60

70

80

90

100

Passenger Arrival Rate

%
 T

rip
s 

C
om

pl
et

ed

Simple
Enhanced
Recalc. 10

Figure 4: Percentage of completed trips versus
passenger load (floors=30, cars=10, t=10000)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

3000

Wait Time (s)

N
um

be
r 

of
 P

as
se

ng
er

s

Figure 5: Simple agent, pickup time distribu-
tion (floors=30, cars=14, load=0.02, t=10000)

expand the same 14 car data point to show the
distribution of all pickup times for the various
agent systems. All the distributions have fat
tails, indicating that there is a significant por-
tion of the population experiencing extremely
long wait times. The Simple agent (Figure
5) maintains its dominance over all forms of
the Enhanced agent, but there remain a few
outliers in its pickup time distribution. The
Recalculate-10 (Figure 8) agent improves upon
the maximum wait time of the Enhanced agent
(Figure 6) by a factor of at least two. The
Recalculate-50 agent in Figure 7 also shows a
striking improvement over the Enhanced agent
system.

4



0 1000 2000 3000 4000 5000 6000 7000 8000
0

100

200

300

400

500

600

700

Wait Time (s)

N
um

be
r 

of
 P

as
se

ng
er

s

Figure 6: Enhanced agent, pickup time distribu-
tion (floors=30, cars=14, load=0.02, t=10000)

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

200

400

600

800

1000

Wait Time (s)

N
um

be
r 

of
 P

as
se

ng
er

s

Figure 7: Recalculate-50 agent, pickup time
distribution (floors=30, cars=14, load=0.02,
t=10000)

4 Discussion

The results of this experiment reveal that the
Simple agent is superior in most respects to the
much more complicated Enhanced agent. The
computational complexity, code size, and run
time of the Simple agent are also better than
those of the Enhanced agent, in all its forms.
The goal of the project, therefore, was not met,
but some valuable insight has been gained.

Concerning the commitment problem, the
Enhanced agent reveals much. Path planning
in a dynamic, stochastic environment is fraught
with pitfalls. Plans must be laid carefully, but

0 500 1000 1500 2000 2500 3000 3500
0

200

400

600

800

1000

1200

Wait Time (s)

N
um

be
r 

of
 P

as
se

ng
er

s

Figure 8: Recalculate-10 agent, pickup time
distribution (floors=30, cars=14, load=0.02,
t=10000)

the planner must be able to abandon old plans
in favor of better ones. In carefully planning of
its course, the Enhanced agent limits its long
term performance in that it choses its planned
path over the most efficient choices of the mo-
ment. The Simple agent has no such commit-
ment; it simply fulfills its car calls and answers
the nearest hall calls.

The Recalculate agents behave much more
like the Simple agent in that they make no per-
manent plans. Each time the recalculate phase
is performed, the agents are allowed to real-
locate the hall calls in the most efficient way.
The notion of bidding an agent’s estimated ar-
rival time makes more sense when those arrival
times happen sooner in the agent’s plan. Long-
term estimates prove to be grossly inaccurate
and inefficient in this domain, as evidenced by
the results in the previous section. The effect
of shorter plans is evident even between the
two Recalculate agents, as the agent with the
shorter time horizon outperforms that with a
longer outlook.

The way forward could be to incorporate the
known length of the recalculate phase into the
bidding cost function of the agent. Knowing
that it will not be able to keep a long-term com-
mitment could help the agent bid more accu-
rately on new hall calls. The Simple agent’s per-
formance is surprising, but there must be more

5



efficient methods of solving the multi-elevator
control problem.
Issues not addressed by this simulation frame-

work, such as time-varying passenger arrival
rates and non-uniform destination floor selec-
tion, are of great importance to the elevator
control community. It would be rather infor-
mative to compare the Simple agent with some
more complex control methodologies like those
listed in [1].
The question of non-homogeneous agent

teams also arises in the elevator domain. Ex-
press elevators and zone covering are two com-
mon examples, but a system of Simple agents
with a few Recompute-10 agents mixed in could
perform better than a homogeneous system.
In all, this project raises more questions than

it answers, and the task domain proves to be
very rich. There are many areas of further in-
vestigation nested within the framework of this
task. Perhaps the author will revisit those top-
ics in future work.

References

[1] Crites and Barto (1998). Elevator Group

Control Using Multiple Reinforcement

Learning Agents. Machine Learning,
33:235-262

6


